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ABSTRACT: 

The goal of this research is to advance the capability to model, predict and control void swelling in 

irradiated structural components through developing engineering-informed, advanced data-driven 

statistical and machine learning techniques. One of the most challenging engineering consequences of 

high-energy neutron irradiation to fuel cladding and structural materials is void swelling. Excess swelling 

not only leads to dimensional instability, but also can cause severe embrittlement of internal materials. 

Void swelling is a complex process depending on many input conditions, such as alloy composition, 

material structure, processing conditions, and irradiation conditions. So far, significant efforts have been 

attempted to develop physics-based models that describe how all these input conditions affect the 

swelling process. However, due to the long development time frames and the necessary simplifications of 

physics-based models, and the large number of input conditions with complex relations vs. the limited 

availability of the experimental data in practice, it has been very challenging for using these physics-

based models to provide adequate guidance and interpretation on what will happen to materials during a 

reactor irradiation. These same constraints have also contributed to the current limitations in attempting to 

directly translate ion irradiation data to in-reactor conditions. 

To address this fundamental issue, this project will establish new engineering-informed, data-driven 

methodologies for degradation modeling, prognostics and control of void swelling. The key to our 

innovative ideas is a novel machine learning concept called transfer learning, aiming to leverage the 

knowledge gained through analyzing the swelling of a sample with specific material and irradiation 

conditions to enhance the modeling and analysis of other samples with similar characteristics. With this 

approach, degradation modeling, prognostics, and control of sample volume changes can be understood 

across many different variables associated with a single alloy class.  

The potential impact of the project will be significant and transformative. First, from the methodological 

viewpoint, this research will significantly enrich the existing literature by establishing a new integrated 

suite of transfer learning-enabled analytical methods, which can essentially transform our current 

practices in degradation modeling, prognostics, and control for applications with sparse data. Second, 

from the application viewpoint, this research will bring fundamental new knowledge and understanding of 

void swelling process, ensuring more effective aging management and license extension approaches. 

While we focus on void swelling, the proposed methods can be also applied to other degradation of 

materials in nuclear applications, e.g., changes of fracture toughness in reactor pressure vessels, corrosion 

in cladding, and fission-product swelling of fuel. Such efforts will lead to enhanced equipment safety, 

improved operation and maintenance, and ultimately help the U.S. gain a competitive advantage in 

nuclear power. Our team has the necessary collective expertise to execute the proposed project—

involving data analytics, statistical learning and machine learning, condition-based monitoring, 

prognostics and control, and radiation damage and corrosion of materials for nuclear systems, as well as 

experience in leading breakthrough research initiatives. We have crafted a shared vision and a carefully 

developed plan to test the proposed methods and maximize the chances of success of the project.  


